Acta Cryst. (1972). B28, 2377

2377

The Crystal Structure of the Orthorhombic Form of L-(+ )-Histidine

By JouN J. MADDEN,* EDWARD L. MCGANDY AND NADRIAN C. SEEMANT
Crystallography Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, U.S.A.

(Received 23 August 1971)

L-(+)-Histidine (CsN3;O,H,) crystallizes in the orthorhombic space group P2,2,2,, with a=5-177, b=

7-322, ¢=18-87 A

, and Z=4, Data were collected with Mo K« radiation, using balanced filters. The

structure was solved by direct phasing methods and refined to a final agreement index of 0-034 for ali
refleciions. The conformation of the molecule is that of the open, extended form, and is stabilized
principally by an intramolecular hydrogen bond between the amino nitrogen atom and the adjacent
imidazole nitrogen atom. Where this conformation is found in proteins, it is likely to reduce the chemi-
cal reactivity of that imidazole group, because one of the imidazole nitrogen atoms is sterically hindered

by the peptide bacl. one.

Introduction

The amino acid L-histidine (Fig. 1) has been extensively
studied because of the ability of its imidazole moiety
to act as a proton douor, a proton acceptor, and a
nucleophilic reagent. As the free amino acid, histidine
catalyzes the degradation of various esters (Rohling &
Fox, 1967), while in polypeptides, histidine has been
implicated in the mechanism of a number of enzymes,
most notably bovine pancreatic ribonuclease (Mea-
dows, Roberts & Jardetsky, 1969) and a-chymotrypsin
(Schoellman, Schoellman & Shaw, 1963). In an effort
to relate the conformation of histidine to its reactivity
in these systems, its structure has been studied by X-
ray crystallography in several metal complexes (Free-
man, 1967) and as the protonated hydrochloride
(Donohue, Lavine & Rollett, 1956; Donohue & Caron,
1964; Bennett, Davidson, Harding & Morelle, 1970).
We have investigated the free base form of L-histidine
by X-ray crystallography to determine the conforma-
tion of the molecule in the absence of ionic ligands.

Experimental

Preparation of the crystals

Crystals of histidine were prepared by slow evapora-
tion of an aqueous solution of L-histidine (Nutri-
tional Biochemical Corporation), and were then dried
over calcium chloride. A large number of the crystals
were either twinned or warped, as judged by visual
inspection. Of those of acceptable size for data collec-
tion, only one was untwinned as determined by pre-
cession and Weissenberg photographs. This crystal
was cleaved into a plate (0-3x0:3x0-1 mm), and
mounted on a 0-05 mm glass fiber along its [121] axis
with epoxy resin.

* Present address: Biochemistry, Frick Chemical Labor-
atory, Princeton University, Princeton, N.J, 08540, U.S.A.

1 Present address: Biology Department, Schermerhorn Hall,
119th St., Columbia University, New York, N.Y., U.S.A,

Data collection and processing

Table 1 lists the unit-cell parameters, space group,
and density as measured on the crystal used for data
collection. Intensity data were collected on a Picker
four-circle FACS I diffractometer, using w scans of
0-7° taken at a scan rate of 0-25° min~! to a 26 value of
55°. Molybdenum radiation (Mo Ka,,,=0-71068 A)
was used with balanced zirconium and yttrium filters.
A bandpass intensity correction (Young, 1966;
McGandy, 1969) was applied. 992 independent reflec-
tions, excluding systematic absences, were measured,
of which 927 were observed and 65 unobserved. A
reflection was considered to be unobserved if its meas-
ured intensity was less than 2:50¢ (with ¢?=Nr+
Npgi1+ Ngga, Where Np=total peak count, and Ngg;
and Ngg,=the background counts on either side of the
peak). The intensity for unobserved reflections was set
arbitrarily to 1-:25¢0, and these reflections were given a
weight of zero in the least-squares refinement proce-
dure.

Table 1. Crystal data
L-Histidine C¢N30,Ho. M.W. 155-2 dalton

" Space group: orthorhombic, P2;2,2;

Systematically absent reflections: 400, h=2n+1; 0kO, k=
2n+1; 00/, I=2n+1
a= 5177 (5) A

=1-446 (7) g.cm~3
dobs =1-428 (7) g.cm~3

Solution of the structure

The structure was solved using direct-method pro-
grams (Maslen & Hall, 1967) for generating triple
products (DP3) and for tangent refinement (DPS5), and
a program (Main, 1968) for the selection of origin- and
enantiomorph-determining reflections. Normalized
structure amplitudes (£’s) were determined from scale
and temperature factors, estimated from a Wilson plot
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(Shiono, 1966), and were renormalized on parity,
sin 8, and HKL groupings. The 117 highest E reflec-
tions were used as input to the DP3 program and the
Main program.

The Main program generated three linearly inde-
pendent reflections to determine an origin, one reflec-
tion to fix the enantiomorph, and an arbitrary fifth
reflection, which was necessary to generate phases for
all of the other reflections. Phases were generated and
refined by program DP3, and an E Fourier map was
calculated. This map contained five major peaks, which
could not be attributed to any particular group in
histidine, but which were used to calculate structure

Table 2. Positional parameters of L-histidine

The x, y, and z coordinates for one of the four molecules in the
unit cell are given, along with an estimate of the accuracy of
each., The three symmetry-related molecules have the coor-
dinates: 0-5—x, —y, 0-54+2z; 0-5+x, 0:5—y, —z; and —x,
0-5+y, 05—z

The values for the nonhydrogen atoms are multiplied by 104,
those for the hydrogen atoms by 103.

X Y zZ
o) 2249 (3) 47 (2) 1982 (1)
0O(2) —1759 (3) 90 (2) 2419 (1)
N(1) 4120 (3) —1788(2) 3107 (1)
N(2) 5331 (3) —605 (2) 4470 (1)
N(3) 3743 (3) -5() 5534 (1)
C(1) 622 (3) —170 (2) 2463 (1)
C(2) 1647 (3) —765 (2) 3197 (1)
C@3) 2089 (4) 907 (3) 3674 (1)
C4) 3082 (4) 398 (2) 4397 (1)
C(5) 5629 (4) —816 (3) 5163 (1)
C(6) 2092 (4) 774 (3) 5050 (1)
H(IN1) 487 (4) —186 (3) 353 (1)
H(2N1) 374 (5) —295 (4) 296 (1)
H(3N1) 524 (5) —123 (3) 281 (1)
H(N3) 349 (5) 0(4) 603 (1)
H(C2) 41 (4) —162 (3) 342 (1)
H(1C3) 44 (5) 152 (3) 371 (1)
H(2C3) 320 (5) 184 (4) 345 (1)
H(CS) 704 (5) —146 (4) 536 (1)
H(C6) 53 (5) 146 (4) 517 (1)

THE ORTHORHOMBIC FORM OF L-(+)-HISTIDINE

factors for the high E reflections. The 10 reflections
which gave the best agreement with the observed struc-
ture factors and which contained three origin-deter-
mining reflections and an enantiomorphic one, were
recycled into DPS5, and the resultant E Fourier map
calculated. This map contained the 11 nonhydrogen
atoms of histidine and gave an initial R of 0-27
(R=Z|IF| = |F/IF,).

After six cycles of isotropic full-matrix least-squares
refinement (Busing, Martin & Levy, 1962), the param-
eter shifts had converged and the R value was 0-07 for
all reflections. A difference Fourier map revealed four
peaks, corresponding to four of the hydrogen atoms.
Structure factors were recalculated, including these
four hydrogen atoms, and a second difference Fourier
map was computed. The highest five peaks corre-
sponded to the remaining hydrogen atoms. Two cycles
of least-squares refinement, using isotropic temper-
ature factors for the hydrogen atoms and anisotropic
ones for the nonhydrogen atoms, reduced the un-
weighted R to 0-032 for all reflections and 0-030 for all
observed reflections. To improve the agreement be-
tween F, and F, for both the low- and high-angle (8)
reflections, a weighting scheme (Snyder, 1968) was
derived such that 4F/o was equal to 10 for 15 sin 8
groups of F, containing equal numbers of reflections.
Two cycles of full-matrix least-squares refinement,
using this weighting scheme, yielded an R of 0-034 for
all reflections and gave the parameters and molecular
dimensions shown in Tables 2 to 8. The atomic posi-
tions calculated with this empirical weighting scheme
were not significantly different from those calculated
without a weighting scheme, while the thermal param-
eters showed slight variations between the two
weighting schemes.

Discussion

The distances and valence angles in the orthorhombic
form of L-histidine (Table 5) are not significantly

Table 3. Thermal parameters for L-histidine
The anisotropic coefficients are derived from the expression: T=exp [— (k2811 + k2822 + 12833+ 2hk B2+ 2hiB13 + 2kiB23)]
B and afx 105,

it B2z B33 Pz B3 B3

(6B or afi1) (6f22) (0f33) (h12) (6h13) (6823)

o(1) 2424 (15) 2236 (14) 115 (2) ~207 (2) — 15(1) 125 (1)

0(2) 1870 (11) 1552 (9) 226 (4) 71 (1) —104 (2) 187 (4)

N(1) 1961 (12) 950 (6) 115 (2) 223 (4) -7Q) 1(1)

N(2) 2430 (16) 1411 (9) 128 (2) 315 (5) — 59(1) -6 (1)

N@3) 2932 (18) 1319 (8) 107 (1) —-211(4) — 23 (1) - 13()

C(1) 2035 (12) 855 (6) 116 (2) —197 (4) —105 (2) 24 (1)

C(2) 1615 (9) 848 (6) 105 (2) 57 (1) =3 (D 32 (1)

C(3) 2993 (19) 884 (6) 126 (2) 392 (6) —111 (2) — 21 (1)

C(4) 2316 (14) 816 (5) 121 (2) 26 (1) - 67(2) — 28 (1)

C(5) 2544 (15) 1375 (8) 141 (3) 179 (4) —135(2) 36 (1)

C(6) 2439 (15) 1159 (7) 147 (3) 36 (1) - 11(1) — 84 (2)

Isotropic temperature factors B for hydrogen atoms

H(IN1) H(2N1) H(@3NID) H(N3) H(C2) H(1C3) H(2C3) H(CS) H(Cs6)
1-65 (5) 3-18 (4) 2-81 (9) 4-27 (10) 1-48 (4) 2:59 (7) 269 (8) 3-01 (9) 3-56 (9)
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Table 4. Structure factor table
for orthorhombic L-histidine

The various columns listed are /, Fobs, and Feale. Unobserved
reflections are designated with an asterisk after the Fops.
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different from those of the other crystalline histidine
forms of the free base that have been solved by X-ray
analysis (Madden, McGandy, Seeman, Harding &

Table 5. Comparison of the bond lengths in orthorhombic
L-histidine with those in L-histidine hydrochloride mono-
hydrate (Donohue & Caron, 1964)

L-His-HCl. H,0
1-240 A
1-265
1-530
1-495
1-527
1-508
1-386
1-319
1-314
1-359
1-358

L-Histidine
1247 (2) A
1-250 (2)
1:545 (2)
1-493 (2)
1:536 (3)
1-505 (3)
1:382 (2)
1-327 (3)
1-339 (3)
1-:374 (3)
1-361 (3)
0-89 (2)
091 (3)
0-90 (2)
1:00 (2)
0-97 (3)
097 (2)
0-95 (3)
098 (3)
096 (3)

O(1)-C(1)
0(2)-C(1)
C(2)-C(1)
C(2)-N(1)
C(2)-C3)
C(4)-C(3)
C(4)-N(2)
C(5)-N(2)
C(5)-N(3)
C(6)-N(3)
C(6)-C(4)
N(1)-H(1N1)
N(1)-H(2N1)
N(1)-H(3N1)
C(2)-H(C2)
C(3)-H(1C3)
C(3)-H(2C3)
C(5)-H(C5)
C(6)-H(C6)
N(3)-H(N3)

Table 6. Comparison of the bond angles in L-histidine
with those in L-histidine hydrochloride monohydrate and
conformation angles of L-histidine

Comparison of bond angles. The angles are given in the form
/. ABC, where B is the vertex of the angle.

A B C
o) C(1) 0
o) C(1) C2)
0(2) C(1) C@)
C(1) C(2) C(3)
N(1) C(2) C(3)
N(1) C(2) C(1)
C2) C@3) C4
C(3) C(4) C(6)
C(3) C4) NQ)
C(6) C4) N2
Cl4) N2 C(5)
N(@) C(5) N@G)
C(5) N@) C(6) 106-9 (2)
N@3) C@6) C4 106-4 (2)

Conformation angles. The sign of the angle is designated ac-
cording to the Newman projection diagram below (c is directly
behind b and attached to d):

L-Histidine
1267 (2)°
117-1 (2)
116-3 (2)
110-6 (1)
109-8 (1)
109:5 (1)
1127 (2)
1299 (2)
120-5 (2)
109:6 (2)
104-9 (2)
112:2 (2)

L-His-HCI.H,O
125-8°
114-2
120-0
113-3
1111
109-4
114-9
131-6
122:1
106-2
108-5
108-7
109-6
1069

a-b-c-d
O(1)-C(1)-C(2)—-C(3)
C(1)-C(2)-C(3)-C(4)
N(1)-C(2)-C(3)-C(4)
C(2)-C(3)-C(4)-C(5)
C(2)-C(3)-C(4)-N(2)

—26-8°
179-9
—59-3
—123-2
56-8
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Hoy, 1972; Edington, 1969). There are, however,
significant differences between the neutral histidines
and the protonated forms, e.g. L-histidine. HCl.H,0

Table 7. Hydrogen bonding distances and angles
in L-histidine

Atom A is covalently bonded to the hydrogen (H) and B is
hydrogen-bonded to atom 4. The number in parentheses after
the atom name refers to the unit cell and symmetry operation
relating this atom to the atoms listed in Table 2. 555 refers to
the origin cell (as per the ORTEP conventions), while 1, 2, 3,
and 4 refer to the symmetry operato:s listed in Table 2. If no
such information is listed, the ato.n is in the origin unit cell,
with a symmetry operation of 1 Johnson 1965).

Atom Distances and angles

A B A-B B-H LAHB
N(I)  N@) 2783 A 1990 A 143-8°
N() 0(2) (545,4) 2:773 1-925 159-2
N() 0(2) (655,1) 2-851 1-981 167-6
NQ@3) 0(1) (555,2) 2-781 1-866 1765

Close contacts

N o(1) 2693
N(1) O(1) (645,4) 2988

Fig.1. An ORTEP plot tiotnson 1965, ~f L-hisudipe, as
found in this swudy, demonscrating the ruiabering sysitem
used.

THE ORTHORHOMBIC FORM OF 1-(+)-HISTIDINE

(Donohue & Caron, 1964) and pL-histidine. HC1. 2H,0
(Bennett et al., 1970). Orthorhombic L-histidine has an
extended alanine backbone as does the DL hydro-
chloride salt, while the L hydrochloride salt folds back
on itself around C(2)-C(3). This folding causes the
imidazole residue to be gauche to both the carboxyl
and primary amino groups, while in the extended
conformation the imidazole is gauche only to the amino
group, and trans to the carboxyl. Thus, as noted by
Bennett et al. (1970), the angles C(1)-C(2)-C(3),
C(2)-C(3)-C(4), and to a lesser extent N(1)-C(2)-C(3),
are significantly larger in L-histidine hydrochloride
than in the orthorhombic free base and the pL-hydro-
chloride (Table 6).

The angles around the N(2), C(5) and N(3) atoms in
the imidazole residue are also significantly different in
the protonated and unprotonated forms. In the pro-
tonated hydrochloride salts, the three angles centered
on these atoms are approximately equal to 109°, a
fact indicative of the aromaticity of the ring. In the un-
protonated orthorhombic compound, the ring angles
at N(2) and N(3) are both significantly compressed

Table 8. Planarity of the imidazole ring
Dplus the adjacent carbon C(3)
The plane calculated for the imidazoie ring plus the carbon
C(3) by least-squares analysis is given by the =quation:
0:53174+0-8463B+ 0-0324C=1-3633.

Distance

from plane
N2 0-0015 A
N¢3) 0-0012
C3) —0-0004
C(4) 0-0002
C(5) —0-0004
C(6) ~0-0020

Fig.2. An ORTEP plot of the contents of the unit cell of orthorhombic L-histidine. The dotted lines represent hydrogen bonds
found in this structure.
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(104-9 and 106-9° respectively) while the N(2)-C(5)-
N(3) angle is widened to 112°, which is consistent with
an increase in the sp? character of the bond Lybridiza-
tion at the ring carbon, C(5).

A series of three intermolecular hydrogen bonds
determines the packing of the carboxyl and amino
groups, and links the head of one molecule [N(3)] to
the tail of the nexi [O(1)] (Fig. 2). A weak intramol-
ecular hydrogen bond with an NH---N distance of
1-99 A also occurs between the N(1) and N(2) atoms,
contrary to the assertion of Kier (1968) that this type of
bond could probably not form in a similar compound
(histamine). N(1) also approaches O(1) of the same
molecule to a distance of 2-69 A, but none of the N(I)
hydrogen atoms is closer than 2-42 A to O(1), so that
there is no hydrogen bond formed (Table 7). This type
of interaction is identical to the electrostatic interac-
tion described by Sasisekharan (1971) for free amino
acids.

The charge density of each of the atoms in histidine
was estimated using an INDO approximation (Pople,
Beveridge & Dobosh, 1967), giving the results
shown in Table 9. The unprotonated nitrogen atom of
histidine has a large negative charge, as is the case for
the unprotonated nitrogen atom of pf-(pyrazolyl3-)-
L-alanine (Seeman, 1970) with which it is compared.
These ring charges can be explained by postulating the
resonance forms shown in Fig, 3. The contributions of
resonance form (II), in which the unprotonated nitrogen
atoms have formal negative charges, is further con-
firmed by the fact that the N(3)-C(5) bond in histidine

0
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Fig.3. The primary resonance contributors to the structures of
(@) L-histidine and (b) pB(pyrazolyl-3)-alanine (Seeman,
1970).
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and the N(3)-C(5) bond in pyrazole-alanine are con-
siderably shortened (1-:339 and 1-332 A respectively)
compared to the expected N-C single bond length
(about 147 A), and even shorter than those of
N(2)-C(4) and N(3)-C(6) (1:382 and 1-374 A, respec-
tively) of the histidine imidazole.

Table 9. Charge density on the nonhydrogen atoms of
L-histidine and B(pyrazolyl-3)-L-alanine (Seeman, 1970)
as determined by INDO (Pople et al., 1967)

The numbers given represent the number of electrons found on
each atom, such that a charge of 7-00 would be neutral for
nitrogen, highly negative for carbon, and highly positive .or
oxygen.

Electronic charge

L-Histidine B (Pyrazolyl-3)-L-alanine
o) 8-5% 8-58
0(2) 8-54 8-54
N(1) 695 7-16
N(2) 7-31 7-25
N@3) 7-05 695
C) 5-53 5-51
C(2) 5-99 5:97
C(@3) 596 5-98
C4) 593 5-8%
C(5) 579 5-92
C(6) 5-99 606

While the frans conformation about C(2)-C(3)
places the bulkiest groups (carboxyl and imidazole) on
opposite sides of the molecule, thereby reducing steric
interference, there are several other conformations of
equally low energy (Kistenmacher & Marsh, 1971).
More stability of the type described by Ponnuswamy &
Sasisekharan (1970), is obtained by the intramolecular,
zwitterionic interaction between the O(1) and N(1)
atoms, and also from the intramolecular hydrogen
bond between the N(1) and N(2) atoms. In this con-
formation, N(2), the unprotonated nitrogen atom, is
sterically hindered so that it cannot be approached by
an electrophilic reagent without first a rotation of 120°
around either C(2)-C(3) or C(3)-C(4). While such a
rotation is energetically allowed for the free amino acid
in solution, in a polypeptide, steric hindrance from
spatially neighboring groups could prevent such a
rotation, thereby chemically inactivating the imidazole
residue.
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The Crystal Structure of the Monoclinic Form of L-Histidine

By J.J. MADDEN,* E.L. McGANDY & N.C.SEEMANY
Department of Crystallography, University of Pittsburgh, Pittsburgh, Pa. 15213, U.S. A.

AND MARJORIE M. HARDING & A.Hoy
Department of Chemistry, University of Edinburgh, Edinburgh 9, Scotland

(Received 4 October 1971)

L-Histidine (CsN;O,H) crystallizes from ethanol in the monoclinic space group P2,, witha=5-172, b=
7-384, ¢c=9474 A, p=97-162° and Z=2. The structure was solved simultaneously by independent
investigations using the tangent formula and from a trial solution based on the structure of the ortho-
rhombic form. The crystals show lamellar twinning, which arises from faults in the stacking of the
imidazole residues such that there are two possible orientations of the unit cells. The structures could not
be refined below an R=0-10, but a comparison of the bond distances and angles with those of other
free-base histidines shows no significant differences.

clinic L-histidine which is described in this paper and
was studied independently and simultaneously at
Edinburgh and Pittsburgh.

Introduction

Histidine, pictured below, and some of its isostructural
analogs, have now been examined as free bases in a -
series of compounds which includes orthorhombic

/
L-histidine (Madden, McGandy & Seeman, 1972), '\_ __c® A o)
D, L-histidine (Edington, 1970), f-(pyrazoyl-3)-L-alanine N(3) \

(Seeman, McGandy & Rosenstein, 1972), and mono- C(4) —C(3)——C(2}—C(} -
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